We define the multiples of 2/3 as the product of any integer multiplied by 2/3. Therefore, to create a list of multiples of 2/3 we start by multiplying 2/3 by one, then we multiply 2/3 by two, then we multiply 2/3 by three, and so on.

To multiply a fraction by an integer, we leave the denominator alone and multiply the numerator by the integer. It is impossible to give you a list of all multiples of 2/3 because the list goes on forever. However, here is the math to calculate the beginning list of multiples of 2/3.

2/3 × 1 =

**2/3**2/3 × 2 =

**4/3**2/3 × 4 =

**6/3**2/3 × 4 =

**8/3**2/3 × 5 =

**10/3**2/3 × 6 =

**12/3**2/3 × 7 =

**14/3**2/3 × 8 =

**16/3**2/3 × 9 =

**18/3**2/3 × 10 =

**20/3**2/3 × 11 =

**22/3**2/3 × 12 =

We have simplified the fractions above for you. Below are the multiples of 2/3 in their lowest possible terms:**24/3**2/3 =

**2/3**4/3 =

**1 1/3**6/3 =

**2**8/3 =

**2 2/3**10/3 =

**3 1/3**12/3 =

**4**14/3 =

**4 2/3**16/3 =

**5 1/3**18/3 =

**6**20/3 =

**6 2/3**22/3 =

**7 1/3**24/3 =

As we stated above, the list of multiples of 2/3 goes on forever because the product of 2/3 multiplied by any whole number (integer) is a multiple of 2/3.
You can also create a list of multiples of 2/3 if you keep adding 2/3 like this:**8****2/3**

2/3 + 2/3 =

**4/3**

2/3 + 2/3 + 2/3 =

**6/3**

2/3 + 2/3 + 2/3 + 2/3 =

**8/3**

∞

Again, the list can go on forever, because you can continue adding 2/3 to the list. Therefore, the list of multiples of 2/3 is ∞ (infinite).

**Multiples of Fractions**

Do you need the multiples of another fraction? Enter a another fraction below to get the multiples of that fraction.

**Multiples of 2/4**

Go here for the next fraction on our list that we have multiples for.